Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses

نویسندگان

  • Cene Gostinčar
  • Lucia Muggia
  • Martin Grube
چکیده

Black meristematic fungi can survive high doses of radiation and are resistant to desiccation. These adaptations help them to colonize harsh oligotrophic habitats, e.g., on the surface and subsurface of rocks. One of their most characteristic stress-resistance mechanisms is the accumulation of melanin in the cell walls. This, production of other protective molecules and a plastic morphology further contribute to ecological flexibility of black fungi. Increased growth rates of some species after exposure to ionizing radiation even suggest yet unknown mechanisms of energy production. Other unusual metabolic strategies may include harvesting UV or visible light or gaining energy by forming facultative lichen-like associations with algae or cyanobacteria. The latter is not entirely surprising, since certain black fungal lineages are phylogenetically related to clades of lichen-forming fungi. Similar to black fungi, lichen-forming fungi are adapted to growth on exposed surfaces with low availability of nutrients. They also efficiently use protective molecules to tolerate frequent periods of extreme stress. Traits shared by both groups of fungi may have been important in facilitating the evolution and radiation of lichen-symbioses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Growth Media on the Diversity of Culturable Fungi from Lichens.

Microscopic and molecular studies suggest that lichen symbioses contain a plethora of associated fungi. These are potential producers of novel bioactive compounds, but strains isolated on standard media usually represent only a minor subset of these fungi. By using various in vitro growth conditions we are able to modulate and extend the fraction of culturable lichen-associated fungi. We observ...

متن کامل

The recognition pattern of green algae by lichenized fungi can be extended to lichens containing a cyanobacterium as photobiont

Lichens are intimate and long-term symbioses of photosynthetic, unicellular algae or cyanobacteria and heterotrophic fungi joined to form a new biological entity different from its individual components. Specificity required for the lichen association can be defined in this context as the preferential, but not exclusive, association of a biont with another. Recognition of compatible algal cells...

متن کامل

Microbiome change by symbiotic invasion in lichens.

Lichens are obligate symbioses between fungi and green algae or cyanobacteria. Most lichens resynthesize their symbiotic thalli from propagules, but some develop within the structures of already existing lichen symbioses. Diploschistes muscorum starts as a parasite infecting the lichen Cladonia symphycarpa and gradually develops an independent Diploschistes lichen thallus. Here we studied how t...

متن کامل

Black fungi in lichens from seasonally arid habitats

We present a phylogenetic study of black fungi in lichens, primarily focusing on saxicolous samples from seasonally arid habitats in Armenia, but also with examples from other sites. Culturable strains of lichen-associated black fungi were obtained by isolation from surface-washed lichen material. Determination is based on ITS rDNA sequence data and comparison with published sequences from othe...

متن کامل

Selective factors involved in oil flotation isolation of black yeasts from the environment

The oil flotation isolation technique has been successfully applied to recover chaetothyrialean black yeasts and relatives from the environment. The selective mechanisms playing a role in isolation are unknown. The fungi concerned are supposed to occupy specialized microniches in nature, taking advantage of (1) oligotrophism. Mineral oil as a main selective agent may be based on (2) hydrophobic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012